Frequent Itemsets Patterns in Data Mining

Leena Nanda, Vikas Beniwal

Abstract
We are in the information age. In this age, we believe that information leads to power and success. The efficient database management systems have been very important assets for management of a large corpus of data and especially for effective and efficient retrieval of particular information from a large collection whenever needed. Unfortunately, these massive collections of data vary rapidly became overwhelming. Similarly, in data mining discovery of frequent occurring subset of items, called itemsets, is the core of many data mining methods. Most of the previous studies adopt Apriori-like algorithms, which iteratively generate candidate itemsets and check their occurrence frequencies in the database. These approaches suffer from serious cost of repeated passes over the analyzed database. To address this problem, we propose two novel method; called Impression method, for reducing database activity of frequent item set discovery algorithms and Transaction Database Spin Algorithm for the efficient generation for large itemsets and effective reduction on transaction database size and compare it with the various existing algorithm. Proposed method requires fewer scans over the source database.

Keywords: Itemsets , Apriori , Database mining

INTRODUCTION
• Non-trivial extraction of implicit, previously unknown and potentially useful information from data warehouse
• Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns
• “Data mining is the entire process of applying computer-based methodology, including new techniques for knowledge discovery, from data warehouse.”
• A process that uses various techniques to discover “patterns” or knowledge from data.
• Look for hidden patterns and trends in data that is not immediately apparent from summarizing the data

Data mining, the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the most important information in their data warehouses. Data mining tools predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. The automated, prospective analyses offered by data mining move beyond the analyses of past events provided by retrospective tools typical of decision support systems. Data mining tools can answer business questions that traditionally were too time consuming to resolve. They source databases for hidden patterns, finding predictive information that experts may miss because it lies outside their expectations.

Knowledge Discovery in Databases:

Data Mining, also popularly known as Knowledge Discovery in Databases (KDD), refers to the nontrivial extraction of implicit, previously unknown and potentially useful information from data in databases. The following figure (Figure 1.1) shows data mining as a step in an iterative knowledge discovery process. The Knowledge Discovery in Databases process comprises of a few steps leading from raw data collections to some form of new knowledge. The iterative process consists of the following steps:
• Data cleaning: also known as data cleansing, it is a phase in which noise data and irrelevant data are removed from the collection.
• Data integration: at this stage, multiple data sources, often heterogeneous, may be combined in a common source.
• Data selection: at this step, the data relevant to the analysis is decided on and retrieved from the data collection.
• Data transformation: also known as data consolidation, it is a phase in which the selected data is transformed into forms appropriate for the mining procedure.
• Data mining: it is the crucial step in which clever techniques are applied to extract patterns potentially useful.
Fig 1: Traditional process for Data Mining

- Pattern evaluation: in this step, strictly interesting patterns representing knowledge are identified based on given measures.

- Knowledge representation: is the final phase in which the discovered knowledge is visually represented to the user. This essential step uses visualization techniques to help users understand and interpret the data mining results.

How does data mining work?

While large-scale information technology has been evolving separate transaction and analytical systems, data mining provides the link between the two and its software analyzes relationships and patterns in stored transaction data based on open-ended user queries. Types of analytical software are available: statistical, machine learning, and neural networks. Generally, any of four types of relationships are sought:

Classification: Stored data is used to locate data in predetermined groups. For example, a restaurant chain could mine customer purchase data to determine when customers visit and what they typically order. This information could be used to increase traffic by having daily specials.

Clusters: Data items are grouped according to logical relationships or consumer preferences. For example, data can be mined to identify market segments or consumer affinities.

Associations: Data can be mined to identify associations. The beer-diaper example is an example of associative mining.

Related Work:

Let I = {I1, I2… Im} be a set of m distinct attributes, also called literals. Let D be a database, where each record (tuple) T has a unique identifier, and contains a set of items such that T ∈ I. An association rule is an implication of the form X⇒ Y, where X, Y ∈ C, are sets of items called item sets, and X∩ Y=φ. Here, X is called antecedent, and Y consequent. Two important measures for association rules support (s) and confidence (α) can be defined as follows:

Support: The support (s) of an association rule is the ratio (in percent) of the records that contain X ⊆ Y to the total number of records in the database. For Example, if we say that the support of a rule is 5% then it means that 5% of the total records contain X ⊆ Y.

Confidence: For a given number of records, confidence (α) is the ratio (in percent) of the number of records that contain X ⊆ Y to the number of records that contain X. For Example, if we say that a rule has a confidence of 85%, it means that 85% of the records containing X also contain Y. The confidence of a rule indicates the degree of correlation in the dataset between X and Y. Confidence is a measure of a rule’s strength. Often a large confidence is required for association rules.[10] Different situations for support and confidence.

![Fig 2.1 support and confidence situations](image)

Basic Algorithm “APRIORI”: It is by far the most well known association rule algorithm. This technique uses the property that any subset of a large item set must be a large item set. The Apriori generates the candidate itemsets by joining the large itemsets of the previous pass and deleting those subsets, which are small in the previous pass without considering the transactions in the database. By only considering large itemsets of the previous pass, the number of candidate large itemsets is significantly reduced. In Apriori, in the first pass, the itemsets with only one item are counted. The discovered large itemsets of the first pass are used to generate the candidate sets of the second pass using the apriori_gen() function. Once the candidate itemsets are found, their supports are counted to discover the large itemsets of size two by scanning the database. This iterative process terminates when no new large itemsets are found. Each pass i of the algorithm scans the database once and determine large itemsets of size i. Li denotes large itemsets of size i, while Ci is candidates of size i.

The apriori_gen() function has two steps. During the first step, L_{k−1} is joined with itself to obtain C_k. In the second step,
apriori_gen() deletes all itemsets from the join result, which have x some (k-1)-subset that is not in L_k-1. Then, it returns the remaining large k-itemsets. Consider the solve example in fig 2.3.

Method: apriori_gen()

Input: set of all large (k-1)-itemsets L_k-1

Output: A superset of the set of all large k-itemsets //Join step II = Items i insert into C

Select p.I, p.I, ……, p.I_k-1_q.I_k-1_k From C_k-1 where p.I = q.I_k-1 and …… and p.I_k-2 = q.I_k-2 and p.I_k-1 < q.I_k-1_k-1 //pruning step for all itemsets c Є C_k

do for all (k-1)-subsets s of do If (s Є L_k-1 then delete c from C

The subset () function returns subsets of candidate sets that appear in a transaction. Counting support of candidates is a time-consuming step in the algorithm. Consider the below mentioned Algorithm.

Algorithm 1:
//procedure large Itemsets
1) C_k=apriori_gen(L_k-1)
 // counting support of C_k
2) Count (C_k, D)
3) L_k={C Є C_k | c.count ≥ minsup} //generating k-Candidate itemsets are generated from (k-1) large itemsets
4) C_k=apriori_gen (L_k-1)
5) end
6) L_k={C Є C_k | c.count ≥ minsup}
7) end
8) L: = \bigcup_{k} L_k

Apriori always outperforms AIS. Apriori incorporates buffer management to handle the fact that all the large itemsets L_k and the candidate itemsets C_k need to be stored in the candidate generation phase of a pass k may not fit in the memory. A similar problem may arise during the counting phase where storage for C_k and at least one page to buffer the database transactions are needed.

Proposed Work
Impression Algorithm:
These above approach suffer from serious cost of repeated passes over the analyzed database. To address this problem, we propose a novel method; called Impression method, for reducing database activity of frequent item set discovery algorithms. The idea of this method consists of using Impression table for pruning candidate itemsets. The proposed method requires fewer scans over the source database. The first scan creates Impression, while the subsequent ones verify discovered itemsets.

The goodness of the Impression algorithm is:
1) Databases scans will be less,
2) Faster snip of the candidate itemsets.

Most of the previous studies on frequent itemsets adopt Apriori-like algorithms, which iteratively generate candidate itemsets and check their occurrence frequencies in the database. It has been shown that Apriori in its original form suffer from serious costs of repeated passes over the analyzed database and from the number of candidates that have to be checked, especially when the frequent itemsets to be discovered are long.

Impression method generates Impression table from the original database and use them for pruning candidate itemsets in the iteration.

Apriori-like algorithms use full database scans for pruning candidate itemsets, which are below the support threshold. Impression method prunes candidates by using dynamically generated Impression table thus reducing the number of database blocks read.

Impression Property:
A Impression table used by our method is a set of Impression generated for each database item set. The Impression of a set X is an N-bit binary number created, by means of bit-wise OR operation from the Impression of all data items contained in X.

The Impression has the following property. For any two set X and Y, we have X Є Y if:

Impr (X) AND Impr (Y) = Impr (X)

Where AND is the bit-wise AND operator. The property is not reversible in general (when we find that the above formula evaluates to TRUE we still have to verify the result traditionally).

Algorithm:
Scan D to generate Impression S and to find L;

For (K=2; L_k \neq 0; K++) do Begin
C = apriori_gen (L_k-1);
Begin
For all transactions t Є D do begin
C = subset (C_k-1);
End
For all candidate c Є C do c.count++; End

All Rights Reserved © 2012 IJARCSEE
End
L_k = \{c \in C_k | c\text{-count} \geq \text{minsup}\};
End

Answer = v_k \cup L_k;

Scan D to verify the answer;

Apriori_gen()

The apriori_gen() function works in two steps:

1. Join step
2. Prune step

Transaction Database Snip Algorithm:

To determine large itemsets from a huge number of candidate large itemsets in early iterations is usually the dominating factor for the overall data mining performance. To address this issue we propose an effective algorithm for the candidate set generation. Explicitly, the number of candidate 2-itemsets generated by the proposed algorithm is, in order of magnitude, smaller than that by the previous method, thus resolving the performance bottleneck.

Another performance related issue is on the amount of data that has to be scanned during large item set discovery. Generation of smaller candidate sets by the snip method enables us to effectively trim the transaction database at much earlier stage of the iteration i.e. right after the generation of large 2-itemsets, therefore reducing the computational cost for later iteration significantly.

The algorithm proposed has two major features:

- Efficient generation for large itemsets.
- Reduction on transaction database size.

Here we add a number field with each database transaction. So when we check about the support of each item set in the candidate itemsets. Then if the candidate item set is the subset of that transaction then the number field is incremented by one each time.

After calculating the support of the candidate item set. Then we snip those transactions of the database that have:

Number < length of the transaction.

So if the transaction is ABC then the number of this transaction should be 3 or greater than 3.i.e at least 3 candidate itemsets are subset of this transaction. So each time the database is sniped on these criteria. Then the input output cost is reduced, as the scanning time is reduced. Here we reduces the storage required by the candidate set item sets by only adding those itemsets in to the large itemsets which qualify the minimum support level.

Algorithm:
Scan D to generate Impression C_1 and to find L_1;
For (K=2; L_k-1 \neq 0; K++) do Begin
C_k = apriori_gen (L_{k-1});
Begin
For all transactions t \in D do begin
C_t = subset (C_k, t);
For all candidate c \in C_t do c\text{-count}++;
D.n++;
End
End
L_k = \{c \in C_k | c\text{-count} \geq \text{minsup}\};
End

RESULTS

Graphical representation of the time taken by the various algorithms.

Fig: Comparison of Apriori and Impression

Fig: Comparison of Apriori and Snip Algorithm

Fig: Comparison of Apriori, Impression and Snip Algorithm

The number of database scans:
- In the Apriori algorithm the number of database scan is of K times where K is the largest value of K in L_k or of C_k.
- In the Impression method of number of database scans are only one i.e. while creating the signature table.
- In the Transaction Database Snip algorithm the number of database scans is of K times where K is the largest value of K in L_k or of C_k. But the size of the database scanned is reduced in each iteration.
CONCLUSION

Performance study shows Impression method is efficient than the Apriori algorithm for mining in terms of time as it reduces the number of and Database scans, and also the Transaction Database Snip Algorithm is efficient than the Apriori algorithm for mining in terms of time, as it snip the database in each iteration. The Impression method is roughly two times faster than the Apriori algorithm, as Impression method does not require more than one database scan, and Transaction Database Snip Algorithm snip the database in each iteration.

REFERENCES

[5] Charu C. Aggarwal, Mining Large Itemsets for Association Rules, IBM research Lab.

[8] Jiawei Han and Yongjian Fu, Discovery of Multiple-Level Association Rules from Large Databases, Proceedings of the 21nd International Conference on Very Large Databases, pp. 420-431, Zurich, Switzerland, 1995.

